Partitions of Unity and Vector Fields C. Fierobe (stand in for S. Allais), M. Joseph

Exercise 1. A vector field X on M is singular if X(p) = 0 for some $p \in M$, otherwise X is non-singular.

- 1. Find a non-singular smooth vector field on \mathbb{T}^n .
- 2. Find a non-singular smooth vector field on \mathbb{S}^{2n-1} . *Hint: identify* \mathbb{S}^{2n-1} as a subset of \mathbb{C}^n and use the one parameter subgroup $\varphi^t(z) = (e^{it}z_1, \ldots, e^{it}z_n)$.
- 3. Find a non-singular smooth vector field on \mathbb{RP}^{2n-1} .
- 4. Find a smooth vector field in \mathbb{S}^{2n} with one singularity. *Hint: Try using stereographic projections.*

Exercise 2 (Parallelizable manifolds). Let M be a smooth manifold of dimension n. Prove the equivalence of the following properties:

- 1. M is parallelizable ;
- 2. There exists vector fields X_1, \dots, X_n , such that $(X_1(p), \dots, X_n(p))$ is a base of T_pM for all $p \in M$ (equivalently: are independent, or generate T_pM);
- 3. $\mathcal{X}(M)$ is a free module of dimension dim M on $\mathcal{C}^{\infty}(M, \mathbb{R})$.
- **Exercise 3** (Lie bracket). 1. Let (x_1, \ldots, x_n) be a local system of coordinates on a smooth manifold M, prove that

$$\left[\sum_{i=1}^{n} X_i \frac{\partial}{\partial x_i}, \sum_{j=1}^{n} Y_j \frac{\partial}{\partial x_j}\right] = \sum_{i=1}^{n} \left(\sum_{j=1}^{n} X_j \frac{\partial Y_i}{\partial x_j} - Y_j \frac{\partial X_i}{\partial x_j}\right) \frac{\partial}{\partial x_i},$$

where X_i 's and Y_i 's are smooth real maps.

- 2. Let $\varphi : M \to N$ be a diffeomorphism. Given a vector field X on M, we denote by φ_*X the vector field on N defined by $T\varphi \circ X$ (why is it well defined?). Prove that $\varphi_*([X,Y]) = [\varphi_*X, \varphi_*Y]$ for all vector fields X and Y on M.
- 3. Let $f, g \in \mathcal{C}^{\infty}(M, \mathbb{R})$, prove that for all vector fields X and Y on M,

$$[fX, gY] = f(X \cdot g)Y - g(Y \cdot f)X + fg[X, Y].$$

Exercise 4 (Plateau function). 1. (a) Find a \mathcal{C}^{∞} map f on \mathbb{R} such that $f \ge 0$, f(x) = 0 as soon as $x \le -1$ or $x \ge 0$, and f(x) > 0 for $x \in]-1, 0[$.

- (b) Deduce the existence of a non-decreasing \mathcal{C}^{∞} map $F : \mathbb{R} \to [0, 1]$, such that F(x) = 0 for $x \leq -1$, F(x) = 1 for $x \geq 0$ and F(x) > 0 for $x \in]-1, 0[$.
- (c) Now fix a < b < c < d. Build a \mathcal{C}^{∞} map $P_{a,b,c,d} : \mathbb{R} \to [0,1]$, such that $P_{a,b,c,d}(x) = 0$ for $x \leq a$ or $x \geq d$, $P_{a,b,c,d}(x) = 1$ for $x \in [b,c]$, and $P_{a,b,c,d}(x) > 0$ for $x \in [a,b]$ or $x \in [c,d[$.

2. Let M be a manifold and (U, ϕ) be a chart on M such that $\phi(U) = \mathbb{R}^n$. Write $V = \phi^{-1}(B^n(1))$. Prove that there exists a smooth map $f: M \to [0, 1]$ such that $\operatorname{supp}(f) \subset U$ and f(x) = 1 for $x \in V$.

Exercise 5 (Extension of a vector field of a submanifold). Let M be a compact submanifold of \mathbb{R}^n and X a smooth vector field on M. Show that there exists a smooth vector field Y on \mathbb{R} such that $X = Y|_M$.

Exercise 6 (Extension of a vector field along a path). Let M be a manifold, $\gamma : [0,1] \to M$ a smooth path and $X : [0,1] \to M$ a smooth map such that $X(t) \in T_{\gamma(t)}M$ for all $t \in [0,1]$. Build a map $\overline{X} : [0,1] \times M \to TM$ such that $\overline{X}(t,x) \in T_xM$ for all $(t,x) \in [0,1] \times M \to TM$, and with $\overline{X}(t,\gamma(t)) = X_t$ for all $t \in [0,1]$.